Difference-based Variance Estimation in Nonparametric Regression with Repeated Measurement Data
نویسندگان
چکیده
Over the past three decades, interest in cheap yet competitive variance estimators in nonparametric regression has grown tremendously. One family of estimators which has risen to meet the task is the difference-based estimators. Unlike their residual-based counterparts, difference-based estimators do not require estimating the mean function and are therefore popular in practice. This work further develops the difference-based estimators in the repeated measurement setting for nonparametric regression models. Three difference-based methods are proposed for the variance estimation under both balanced and unbalanced repeated measurement settings: the sample variance method, the partitioning method, and the sequencing method. Both their asymptotic properties and finite sample performance are explored. The sequencing method is shown to be the most adaptive while the sample variance method and the partitioning method are shown to outperform in certain cases.
منابع مشابه
Optimal Difference-based Variance Estimation in Heteroscedastic Nonparametric Regression
Estimating the residual variance is an important question in nonparametric regression. Among the existing estimators, the optimal difference-based variance estimation proposed in Hall, Kay, and Titterington (1990) is widely used in practice. Their method is restricted to the situation when the errors are independent and identically distributed. In this paper, we propose the optimal difference-b...
متن کاملVariance estimation in nonparametric regression via the difference sequence method (short title: Sequence-based variance estimation)
Consider a Gaussian nonparametric regression problem having both an unknown mean function and unknown variance function. This article presents a class of difference-based kernel estimators for the variance function. Optimal convergence rates that are uniform over broad functional classes and bandwidths are fully characterized, and asymptotic normality is also established. We also show that for ...
متن کاملVariance estimation in nonparametric regression via the difference sequence method ( short title :
Consider the standard Gaussian nonparametric regression problem. The observations are (xi, yi) where and where ~i are iid with finite fourth moment p4 < oo. This article presents a class of difference-based kernel estimators for the variance *AMS 2000 Subject Classification 62G08, 62G20 t ~ e ~ w o r d s and Phrases: Nonparametric regression, Variance estimation, Asymptotic minimaxity he work o...
متن کاملVariance Estimation in Nonparametric Regression via the Difference Sequence Method
Consider a Gaussian nonparametric regression problem having both an unknown mean function and unknown variance function. This article presents a class of difference-based kernel estimators for the variance function. Optimal convergence rates that are uniform over broad functional classes and bandwidths are fully characterized, and asymptotic normality is also established. We also show that for ...
متن کاملVariance Estimation in Nonparametric Regression via the Difference Sequence Method by Lawrence
Consider a Gaussian nonparametric regression problem having both an unknown mean function and unknown variance function. This article presents a class of difference-based kernel estimators for the variance function. Optimal convergence rates that are uniform over broad functional classes and bandwidths are fully characterized, and asymptotic normality is also established. We also show that for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015